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An integral-equation and variational formulation for the radiation of swfaee waves 
from a submerged cylindrical duct is developed. This formulation, which complements 
that of Simon (1981 a) for the corresponding scattering problem, provides variational 
representations of the radiation impedance of the duct and (through the Green-function 
identities established by Simon) of the pressure-amplification factor in the scattering 
problem. An exact solution of the integral equation is obtained for the limiting case 
of a narrow duct. 

1. Introduction 
Simon (1981~)  considers (i) the scattering of a surface gravity wave by, and (ii) the 

radiation from, a vertical circular duct of radius a with a submerged mouth at depth h 
in an ocean of infinite depth (figure 1). He develops an integral-equation formulation 
for, and obtains variational bounds to the amplitude of, the axisymmetric component 
of the scattered wave in problem (i) and calculates the pressure-amplification factor 
(the ratio of the wave-induced pressure in the depths of the duct to that at the depth h. 
in the absence of the duct). He also determines the radiation damping and added mms 
in problem (ii) through indirect methods. I present here an integral-equation formula- 
tion of problem (ii), show that the radiation impedance in that problem and the 
magnitude of the pressure-amplification factor in problem (i) may be expressed in 
variational form, and obtain the exact solution for the limiting case of a narrow duct. 

I follow Simon’s notation except aa noted. The velocity potential is given by 

Re {( V / K )  q5eht}, (1.1) 

K = w8/g (1.2) 

where V is the velocity in the depths of the duct, 

is the wavenumber of the surface wave, q5 is a dimensionless complex potential, and 
w is the angular frequency (V = gdQ/nu% and q5 E nKu*O/& in Simon’s notation). 
The radiation problem then is prescribed by 

V8q5 = 0, (1.3) 

arq5 = 0 (r = a,z > h), (1.4) 

q5 N AHdz)(Rr)e-& (Kr+co), (1.5) 

(a,+K)q5 = 0 (Z = O), (1.6) 

q5 N $4,-Hz (r < a,z+co), (1.7) 
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FIUDRE 1. Submerged circular duct in an ocean of infinite depth. 

where A and #, (A E nKaa@& and 4, = Rae in Simon’s notation) are complex 
constants that are to be determined. 

The impedance of the duct, defined as the ratio of the complex amplitude of the 
perturbation pressure to that of the vertical velocity (positive up) &s z -+ 00, is given by 

where p is the fluid density. The corresponding impedance for the column of water in 
r < a, regarded as moving independently of the water in r > a but subject to the 
free-surface condition (1.6) so that 4 = 1 - Kz, is 

2, = ipPw(z - K-I), (1.9) 

wherein ippwz represents the inertia of the column (the pressure required to force the 
oscillation of such a column is pziw V), and - ipo/K = pg/iw represents the gravita- 
tional restoring force at the free surface (at which the complex amplitude of the 
displacement is V / i w ) .  The radiation impedance associated with the motion in r > a 

(1.10) is then given by 

where c = w / K  is the speed of the radiated wave. The real and imaginary parts of 
Z,, pc Im q5, and pc( 1 - Re #o), are measures of the radiation damping and the added 
maas (or stiffness if Re $o > 1) of the water in r > a; ipc is the impedance of a straight- 
crested gravity wave. 

Simon applies Green’s second theorem to the solutions of problems (i) and (ii) to 

2, = 2 - 2, = ipc( 1 - #,), 

obtain 

where 

A = +inpae*P, IAIa = +np8Im#,, (1.11 a, b) 

p = K a ,  7 = K h ,  (1.12a, b)  

and P (= KA in Simon’s notation) is the complex pressure-amplification factor for the 
scattering problem. 
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2. Integral-equation formulation 
Following Havelock (1929) and Simon (1981a), I develop the solution of (1.3) and 

(1.6) with the aid of the Fourier-transform pair (the present statement of this Fourier 
algorithm is somewhat more compact than those of Havelock and Simon) 

kVk 
f(z) = 2KP(iK) Z&) + P(k)  Zk(Z) - = St-’{P(k)}, k a + K s -  

where (2, = k-’N in Simon’s notation) 

z k ( Z )  = COS kz - Kk-’ Sin b, &(Z) = e-”. 

It follows from known results for Fourier integrals (Sneddon 1961) that 

lim f(z) = -K-llimk*F(k). 
w r n  k-*o 

(2.la) 

(2.lb) 

(2.2a, b) 

(2.3) 

The solution of (1.3)-( 1.7) may be expressed in terms of the dimensionless, complex 
amplitude of the radial velocity in the gap,? 

i$q51-== iKaf(z) (f = 0 in z > h) (2.4) 

(the introduction of the scaling factor 8Ka simplifies the subsequent development), 
according to 

(2.6) 1, Zo(z) + 8KaS-1{[kIA(k.a)]-1P(k) Io(kr)} (r < a) 
q 5 =  

8KaS-’{[kK;(ka)]-’P(k) K o ( b ) }  (r  > a) 

where Zo(z) = l -Rz(k+O in (2.2a)), I, and KO are modified Bessel functions, the 
primes signify differentiation with respect to the argument, and, here and subse- 
quently, 

(2.6) 

We remark that q5 = Zo(z), the h t  term on the right-hand side of (2.6), satisfies 
(1.3), (1.6) and (1.7) and would represent the fluid motion in the column T < aifthat 
motion were independent of the motion in r > a. 

Requiring q5 to be continuous across the gap (r = a, 0 < z < k) and invoking (2.1 b) 
and the Wronskian relation for I, and KO, we obtain the integral equation 

F(k)  = s” f(z) z k ( z )  dz. 
0 

where 

and (D(z)  = g(z)/x in Simon’s notation) 

D(x) = 211(x)K1(z). (2.9) 

t An alternative formulation in terms of the potential discontinuity acrosa the duct wall is 
possible, aa in Simon’s solution of the scattering problem, but does not appear to be worth 
pursuing here. 
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invoking K,(ix) = - &i7rBd2)(x) and Hda)’(x) = - Hi2)(z), we obtain 
Letting Kr+m in (2.6), invoking (2.lb), comparing the result with (1.6), and 

A = - [Ka/Hp(Ku)] P(iK).  (2.10) 

9, = 1-P(0). (2.11) 

Letting z+oo with r < u in (2.6), invoking (2.3), and comparing the result with (1.7), 
we obtain 

Combining (2.10) and (2.11) with (l.ll),  we obtain 

P = 2i [~ ,uB~2)~)] - le~F( iK) ,  = 27r~p-2e271m9, (2.12~4, b)  

for the pressure-amplification factor, where ,u and T are defined by ( 1.12). 

3. Variational formulation 

by F2(0), and invoking (2.11) and ( l . l O ) ,  we obtain the variational representation 
Multiplying (2.7) through byf(z), integrating over (0, h), dividing the result through 

for the ratio of the radiation impedance to that for a straight-crested gravity wave. 
Substituting G from (2.8) and invoking (2.6), we obtain the alternative form 

* F’(k)dk -l 

(k2+K2)D(lea) 1 * 

It follows from (3.2) that the real and imaginary parts of each of 2, and 4, are sta- 
tionary with respect to variations of F(k)  about the transform of the solution to (2.7); 
accordingly, lPlay aa given by (2.12b), is also (but arg P, as determined from (2.124, 
is not) stationary with respect to such variations. 

4. Rayleigh-Ritz approximation 
Let {f,,(z)} be a suitable set of functions, each of which satisfies the free-surface 

condition (1.6) a t  z = 0, is not more singular than (h-z)-) as z f  h, and vanishes in 
z > h. Substituting the approximation 

N 

into (2.7), multiplying both sides of the result byf,(z), and integrating over (O,h), we 

(4.2) 

where Gmn = JhJh.tns(z) ~ ( z ,  o ~ ~ c c ; )  dgdz (4.3a) 

2Fm(iK) FJiK) 2K &(b) F,(k) dk (4.3b) 

obtain N h 

n = O  0 
@,,An = 1 fm(z) Z,(Z) dz F’JO) (m = 0, I, . . , , N), 

0 0  

--I 1~ 0 (k2+K2)D(lca)’ 
= 

D(iKu) 

and Fn(k) is derived fromfn(z) through (2.6). 
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It is expedient, in choosing thef,, to invoke the transformation (Simon 1981 a) 

3,(4 = f,(4 -gSbf,,(W& 
which implies, through the above conditions on f,, 

(4.4) 

39x4 = 0 (z = O), 3*(4 = 0 (2 > h), (4.6a, b)  

I?&) = f,(z) cos kz dz. (4.6) so” and, through (2.6), 

A complete set of expansion functions is then given by (Erdblyi et al. 1964) 

P, = ~ ~ ~ ( k h ) ,  3, = (- )~ (2 /n )  (ha- z8)-4~~,,(z/h) (0 < z < e), (4.7a, b)  

where the Tan are Chebyshev polynomials. It follows from (4.7a) that Fm(0) = am, 
whence the solution of (4.2) is given by 

A,  = ( -  )nJ40RlGI-1, (4.8) 

where IG/ is the determinant of the (N+ 1) x ( N +  1) matrix [a,,,] and M, is the 
corresponding minor of G,. 

It follows from (4.1) and (4.7a) that F(0)  = A,, the substitution of which into 
(2.11) yields 

The equivalent of (4.9) also may be obtained by substituting 

$0 = 1 -MWlGl-l. (4.9) 

(4, i0) 

into (3.2) and requiring go to be stationary with respect to independent variations of 
each of the A,,. It follows from the variational principle that the error in the approxi- 
mation (4.9) decremes monotonically with increming N. 

The real and imaginary parts of q5,, calculated from (4.9) with N = 2, are plotted in 
figures 2 and 3. The corresponding approximations to IPI , arg P and .! = (7 -Re q50)/y 
agree with those given by Simon’s (1981 a) figures 6,7,9 and 11 within the accuracy of 
the plots. A comparison among the results for N = 0, 1,2, 3 reveals that the errors in 
the results for N = 1/2 are less than 1/0.01 yo for 0 c y c 2, but that the results for 
N = 0 are good approximations only for y < 1. The present approximations are 
expected to be slightly more accurate than those of Simon in consequence of the failure 
of one of his three expansion functions to satisfy the counterpart of (4.6a) and perhaps 
also by virtue of the orthogonality of the present expansion functions. 

An alternative solution of (2.7) through its reduction to a pair of real integral 
equations, one of which is equivalent to the integral equation for the scattering 
problem, is developed in the appendix. 

5.ThelimitpJO 
Letting /I J. 0, which implies D-+ 1 , in (2.8) with z and 6 fixed and evaluating the 

integral over k with the aid of a table of Fourier integrals, we obtain 

(5.1) 
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Ka 

FIQURE 2. Re #o, aa determined from (4.9). 

where, here and subsequently, an error factor of 1 +O(,Glogp) is implicit. The 
corresponding solution of the integral equation (2.7) is 

f ( 4  = w - 4, 
where the delta function is defined such that 

/;g(z)B(h-z)dz = g(h). 

Note that, according to (5.2), the flow in the neighbourhood of th 
spreads out in a thin, annular sheet. 

lip of th  duct 

Substituting (5.2) into (2.6), which yields F ( k )  = Z,(h),t and invoking (2.12u), we 

h + 7 ,  P+1 (p.10). (6.4u, b) 

obtain (the results (5.4b) and (6.5b) were obtained by Simon 1981b) 

It then follows from (2.12b) that 

Im $o + ?prpae-2T (p J. 0). (6.6~) 

t The substitution of the limiting approximation P(k)  = Z,(h)  into the variational repre- 
sentation (3.2), which might be expected to yield a good approximation to #o, yields a divergent 
integral unless D(ka) is approximated by its limiting value of 1. This difficulty is a consequence 
of the singular nature of the limit p 4 0. 
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Ka 

FIQUBE 3. Im q50, aa determined from (4.9). 

The limiting approximation to I m P  may be determined by perturbing (5.1) and 

(5.2) and is found to be Im p -+ - imp2e-2~ (p J. 0). (6.5b) 

The preceding limit is not uniformly valid as 7 J. 0, in consequence of which g50 and 
P depend on h/a as ,u J. 0 with h/a (rather than 7 )  fixed. In fact, ( 5 . 4 ~ )  is a rather 
good approximation for small but finite ,u if h/a is sufficiently large (see figure 2, 
h/a = 4), but ( 5 . 4 ~ )  fails and Re#, < 0 near ,u = 0 if h/a is sufficiently small (see 
figure 2, h/a = 0.5). The limit (5.4b) remains valid for all h/a, but the approach to 
that limit depends on whether 7 or h/a is fixed (cf. Simon's ( 1 9 8 1 ~ )  figures 5 and 7 ) .  

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE 77-24005, and by a contract with the Office of 
Naval Research. 

Appendix. Alternative solution of integral equation 
The integral equation (2.7) may be recaat in the form 
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where 

is the contribution of the continuous spectrum to the kernel. Substituting 

f(z) = fa(z) + {2/D(ip)) F(iK)fb(z), (A 3) 
where fa and fb are linearly independent functions, into (A 1) and separating the 
result, we obtain the real integral equations 

Taking the transform of (A 3), setting k = iK, and solving for F(iK),  we obtain 

{2/D(i,f4)) P(iK)  = {#O(ip) -FbiK)}-'l?!(iK). (A 5) 

Each of (A 4a, b) may be solved aa in $4; in particular the solution for f, is given by 
(4.1)-(4.8) if G is replaced by G, in (4.3~~) and the first term in (4.3b) is deleted. More- 
over, (A 4b) is equivalent to equation (36a) of Simon (1981a), the integral equation 
for the scattering problem, from which it follows that 

= tnp-lfs(z), (A 6) 

Pb(iK) = #np-'g, (A 7) 

(A 8) 

wheref, is Simon's f. It then follows from Simon's (35b)  that 

where c is Simon's scattering parameter, and from Simon's (4th) and (52) that 

Fb(0) = &r,uJl(,a) e*IP\ csca (a = - arg P). 

setting k = 0 in the transform of (A 3) and substituting P(iK)  from ( 2 . 1 2 ~ ) ~  4 ( 0 )  
from (A 8)' and D(i,a) = -id,@) Hi2)&) from (2.9), we obtain 

F(O) = Fa(()) +~7r~2e-2rIP12(cota-i). (A 9) 

We remark that (A 9) is consistent with (2.11) and (2.12b). 
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